TIME

Pearson Edexcel – Thursday 4 June 2020 - Paper 2 (Calculator) Higher Tier

1.

19	788.4	P1	for substituting values, eg $1040 = K \times 1200 + 20$	
		P1	for process to find K , eg $(1040 - 20) \div 1200$ oe $(= 0.85)$	
		P1	for complete process, eg 09 17: "0.85" \times 1040 + 20 (= 904); 09 18: "0.85" \times "904" + 20	
		A1	for 788.4 or 788 or 789	

Pearson Edexcel - Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

2.

2	2 hours 45 minutes	P1	for 30 ÷ 24 (= 1.25) or 12 ÷ 8 (= 1.5)	May be written in hours and/or minutes
		P1	for finding the sum of their two times eg "1.25" + "1.5" (= 2.75) or 165 (minutes)	or 3 h 15 min or 2 h 75 min
		A1	cao	

Pearson Edexcel - Tuesday 11 June 2019 - Paper 3 (Calculator) Higher Tier

3.

11	(a)	130	P1	for process to divide eg $(3.9 \times 10^7) \div (3 \times 10^5)$	Condone missing brackets
			A1	cao	Accept 1.3×10^2
	(b)	Explanation	CI	Explanation referring to the time Acceptable examples The time will be more It will take longer The answer will be bigger Not acceptable examples The answer will be wrong The answer will be different	

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

4 (a)	200	M1	for $120 \times 5 \div 3$ oe	
		Al	cao	
(b)	statement	CI	Statement that each tap fills at the same rate or that the rate does not change over time Examples Acceptable responses: Taps are running at the same speed They (clearly referring to taps) all fill the pool with the same volume of water The amount of water is the same in the same time (again referring to taps) Each tap is doing a fifth of the filling That all taps take equal time to fill the pool All taps produce the same amount of water That the water flow stays at the same rate over the whole time. Non acceptable responses It will take more time because there are less taps The less taps used the longer it takes to fill the pool That I tap can take up to 24 mins each 3 taps will take longer to fill the pool	Any statement referring to the same amount of water flowing from each tap is acceptable.

5.

5 (a)	2 mins 48 secs	Pl	for an appropriate first step eg 700 ÷ 475 (=1.47) or 475 + [time] (= 4.16 m/s) or [time] ÷ 475 (= 0.24 s/m)	[time] what candidate indicates as time of first race Units are not needed and can be ignored if given
		P1	for a complete method to find the required time eg $700 \div 475 \times [\text{time}] (=168)$ or $700 \div (475 \div [\text{time}]) (=168)$ or $[\text{time}] \div 475 \times 700 (=168)$	Allow calculation in stages and appropriate rounding.
		A1	cao	
(b)	Statement	Cl	eg takes less time Acceptable examples Quicker time Faster time Reduces my answer to part (a) Not acceptable examples It is an underestimate The amount of time could/may increase Laura goes faster	

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

6.

10	10	P1	for start to a process to find the LCM of 20, 45 and 120 (= 360), eg $45 = 3 \times 3 \times 5$ or $20 = 2 \times 2 \times 5$ or $120 = 2 \times 2 \times 2 \times 3 \times 5$ or writes down at least 3 multiples of 45 and 120	Could be presented as complete prime factor trees for 45 or 120
		P1	(dep) for a process to find number of times/hour using their LCM, eg $3600 \div 360$ or $3600 \div 720$	Must use a common multiple. Working may be in minutes.
		A1	for 10 or 11	
		I		

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

7.

13	(a)	65	5	M1 for splitting up the cross section into separate areas and a method to find the area of one part OR for splitting up the pool into smaller prisms and a method to find the volume of one small prism, e.g. a cuboid M1 (dep) for a complete method to find the area of the cross section [with correct dimensions] OR for a method to find the total volume of more than one correct prism M1 (dep) for a complete method to find the volume of the pool [with correct dimensions] (= 195) M1 for "195" × 1000 ÷ 50 (=3900) oe where "195" comes from a volume A1 cao
	(b)	С	1	B1 cao

Pearson Edexcel - Friday 13 June 2014 - Paper 2 (Calculator) Higher Tier

6		2.15 pm	3	M1 for 240 ÷ 60 (=4) M1 for adding at least 3 of the 4 periods of time eg 20 (mins) + "4 (hrs)" + 25 (mins) + 30 (mins) (=5 h 15 min) oe or 2.15 without units A1 for 2.15 pm 14 15 (h or pm) oe
---	--	---------	---	--

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

9.

17		1 hour 45 mins	6	M1 for method to find volume of pond,
X424		Control of the Potent of the Control		
				eg $\frac{1}{2}(1.3 + 0.5) \times 2 \times 1 (= 1.8)$
				M1 for method to find the volume of water emptied
				in 30 minutes, eg $1 \times 2 \times 0.2$ (= 0.4),
				100 × 200 × 20 (= 400000)
				A1 for correct rate, eg 0.8 m ³ /hr, 0.4 m ³ in 30 minutes
				M1 for correct method to find total time taken to empty the
				pond,
				eg "1.8" ÷ "0.8"
				M1 for method to find extra time,
				eg 2 hrs 15 minutes – 30 minutes
				A1 for 1.75 hours, $1\frac{3}{4}$ hours, 1 hour 45 mins or 105 mins
				OR
				M1 for method to find volume of water emptied
				in 30 minutes, eg. $1 \times 2 \times 0.2$ (= 0.4),
				100 × 200 × 20 (= 400000)
				M1 for method to work out rate of water loss eg. "0.4" × 2
				A1 for correct rate, eg 0.8 m ³ /hr
				M1 for correct method to work out remaining volume of water
				eg. $\frac{1}{2}(1.1 + 0.3) \times 2 \times 1 (= 1.4)$
				2
				M1 for method to work out time, eg "1.4" ÷ "0.8"
				A1 for 1.75 hours, $1\frac{3}{4}$ hours, 1 hour 45 mins or 105 mins
				NB working could be in 3D or in 2D and in metres or cm
				throughout
E 20	, a			- 1 AC ACCES - 10

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

10.

6		4.8	M1 for 60 × 60 (=3600) M1 for 15000÷ 20 (=750) or 20÷15000 (=0.00133) or
			"3600"÷15000 (=0.24) or 15000÷"3600" (=4.16) M1 for "3600" ÷ (15000÷20) or "3600"×20÷15000 oe A1 cao

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier

8		09 36	3	M1 for listing 9, 18, 27, 36, 45,(at least 3 correct multiples with at most one incorrect) M1 for listing 12, 24, 36, 48, (at least 3 correct multiples with at most one incorrect) A1 for 09 36 or 9 36 (am)
				OR M1 for listing 9.09 9.18 9.27 9.36(at least 3 correct times with at most one incorrect) M1 for listing 9.12 9.24 9.36 (at least 3 correct times with at most one incorrect) A1 for 09 36 or 9 36 (am)
				OR M1 for $9 = 3 \times 3$ or $12 = 2 \times 2 \times 3$ (could be in factor tree) M1 for $9 = 3 \times 3$ and $12 = 2 \times 2 \times 3$ (could be in a factor tree) A1 for 09 36 or 9 36 (am) SC B2 for 9 36 pm or (after) 36 (minutes) on the answer line

Pearson Edexcel - Thursday 8 November 2012 - Paper 2 (Calculator) Higher Tier

12.

5	25 ÷ 50 = 0.5 h = 30 min 25 ÷ 60 = 0.416 h = 25 m	in 5	3	M1 for $25 \div 50$ or $\frac{60}{50} \times 25$ or 30 (min) or 0.5(h)
				or $25 \div 60$ or $\frac{60}{60} \times 25$ or 25 (min) or $0.41(6)$ (h) or 0.42 (h)
				M1(dep) '0.5' - '0.416 'or '30' - '25' A1 cao
				OR M1 for 60 ÷ 25 (= 2.4) and 60 ÷ "2.4" or 50 ÷ 25 (= 2) and 60 ÷ "2" M1(dep) '30' - '25'
				Al cao

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

				The state of the s
7	Acton after 24, 48, 72, 96, 120 Barton after 20, 40, 60, 80, 100, 120 LCM of 20 and 24 is 120 9:00 am + 120 minutes OR Acton after 24, 48, 1h 12 m, 1h 36m, 2h Barton after 20, 40, 1 h, 1h 20m, 1h 40m, 2h LCM is 2 hours 9:00 am + 2 hours OR Times from 9:00 am when each bus leaves the bus station Acton at 9:24, 9:48, 10:12, 10:36, 11:00 Barton at 9:20, 9:40, 10:00, 10:20, 10:40, 11:00 OR 20 = 2 × 2 × 5 24 = 2 × 2 × 2 × 3 2 × 2 × 2 × 3 × 5 = 120	11:00 am	3	M1 for listing multiples of 20 and 24 with at least 3 numbers in each list; multiples could be given in minutes or in hours and minutes (condone one addition error in total in first 3 numbers in lists) A1 identify 120 (mins) or 2 (hours) as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for listing times after 9am when each bus leaves the bus station, with at least 3 times in each list (condone one addition error in total in first 3 times after 9am in lists) A1 for correct times in each list up to and including 11:00 A1 for 11:00 (am) or 11(am) or 11 o'clock OR M1 for correct method to write 20 and 24 in terms of their prime factors 2, 2, 5 and 2, 2, 2, 3 (condone one error) A1 identify 120 as LCM A1 for 11:00 (am) or 11(am) or 11 o'clock
	2 1 2 1 2 1 3 1 3 - 120		4	I.

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier

14.

6	Distance = $25 + 45 + 30 = 100$	2 pm	4	M1 adding 2 or 3 distances with at least 2 correct)
	Travel time = $100 \div 50 = 2$	8		M1 '100' ÷ 50 (= 2 hours)
	9 am + 2 h + 3 h			M1 $9+3+'100\div50'$ oe
	200789478886C-10-210098864-10-20084-10-			Al cao
				OR
	OR			
	$25 \div 50 + 45 \div 50 + 30 \div 50$			M1 for $\frac{25}{50}$ (= 30 min) or $\frac{45}{50}$ (= 54 min or $\frac{30}{50}$ (= 36 min)
	= 30 min + 54 min + 36 min			M1 for adding 2 or 3 times (from at least 2 correct distances)
	= 120 min = 2 hours			(= 2 hours)
	9 am + 2 h + 3 h			M1 $9+3+30+54+36$ oe
	Page 10 control of the control of th			Al cao
				6.000

OCR GSCE – Thursday 5 November 2020 – Paper 5 (Non-Calculator) Higher Tier

6		6 with correct working	5		"Correct working" requires evidence of at least B2 AND B1 or alternate convincing approach
				B2 for 40 [LCM] identified or M1 for multiples of 8 and 20 up to at least 40	0824, 8.20, 8.40, 9.00, condone 1 error in either
					list FT other values Accept also if starting from 0801
				AND	
				B2 for indicates 40, 80, 120, 160, 200, 240	Implies previous B2 Accept as times [0800], 8.40, 9.20, 10.00, 10.40, 11.20, 12.00 Condone [0801], 8.41, 9.21, 10.01, 10.41, 11.21, 12.01
				or B1 for [time =] 269 oe or 270 oe M1 for <i>their</i> time + 40 oe	eg Accept 4 hours 30 mins For M1 accept 4 correct multiples of 40 listed condone 1 error FT other values Accept as times as above
				If 0 scored, SC1 for answer 6	

OCR GSCE – Tuesday 21 May 2019 – Paper 4 (Calculator) Higher Tier

4	(a)	11.37 [am]	4	B3 for 11.37 pm or B2 for listing the next 3 correct times of both buses. i.e.8.55, 9.13, 9.31 and 8.57, 9.17, 9.37 or B1 for listing the next 3 correct times of one bus i.e. 8.55, 9.13, 9.31 or 8.57, 9.17, 9.37 Alternative method
				B3 for 3 [h] (must be sure 3 is not minutes) or B2 for [LCM=] 180 or answer 14 37 or 2 37 pm or M1 for [18=] 2×3^2 or $[20=] 2^2 \times 5$ allow in a tree diagram etc or [LCM=] $180k (k \neq 1)$ or B1 for listing the next 3 multiples of 18 and 20 i.e. 36, 54, 72 and 40, 60, 80 See appendix for other methods SC2 for answer 14 37 oe
4	(b)	accept any correct assumption e.g. buses keep to the timetable or there are no delays or there are no changes to the timetable or they do not cancel any buses	1	see the appendix for other comments, if there is more than one comment mark the best one providing there are no incorrect comments

OCR GSCE – Sample Papers – Paper 6 (Calculator) Higher Tier

17.

9		Alexander = 120 (minutes)	4	M1 for any two correct expressions,	
		Reiner = 180 (minutes)		e.g $r = 2w$, $a = w + 30$, $a + r + w = 390$	
		Wim = 90 (minutes)	1 AO3.1d 1 AO3.3	M1 for equating one variable, e.g. <i>w</i> + 30 + 2 <i>w</i> + <i>w</i> = 390 oe	
				A1 for solving for one variable, e.g. w = 90 oe	

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier

	1(h) 20 (min) and 50 (min) or $1\frac{20}{60}$ (h) or $1\frac{1}{3}$ (h) or 1.33(h) or $\frac{50}{60}$ (h) or $\frac{5}{6}$ (h) or 0.83(h)	B1	oe Journey time(s) at 10.20	am
	60 (*) 6 (*) 6 (*) 6 * their 1 1/3 or 8	M1	oe Priya's distance at 10).20 am
	their 8 + their $\frac{50}{60}$ or 9.6	M1dep	oe Joe's speed in km/h	
	or 16.8 ÷ 8 or 2.1		Multiplier for distance co	mparison
	16.8 ÷ their 9.6 or 1.75(h) or 1(h) 45 (min) or 105 (min)	M1dep	oe Joe's total journey time	
21	or 16.8 ÷ 8 × 50 (÷ 60)			
	or 16.8 – their 8 their 9.6 or 0.91(6)(h) or 0.917(h) or 0.92(h) or 55(min)	мтоер	Joe's journey time after	overtaking Priya
	11.15 (am)	A1	oe eg quarter past 11 (i	n the morning)
	Ad			
	If 11.15 comes from correct method t	B1M3A0		
	eg 8 ÷ 0.83 = 9.64 16.8 ÷ 9.64 = 1.743 h			
	1.743 × 60 = 104.58 minutes			
	ie 11 : 14 : 58 so 11 : 15			
	8 km implies	B1M1		
	16.8 ÷ 6 or 2.8 with no further valid	working		ВОМО

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 19.

	Alternative method 1					
	15 × 8 or 120 or 3 × 6 or 18	M1	oe total number of hours needed oe total number of hours worked by the 3 machines			
	15 × 8 – 3 × 6 or 102	M1dep	oe total number of hours worked by the other 12 machines			
	8.5	A1				
	Alternative method 2					
	3 × (8 – 6) or 3 × 2 or 6	M1	oe total number of hours not worked by the three machines			
25	their 6 ÷ 12 or 0.5	M1dep	oe that number divided by the other 12 machines			
	8.5	A1				
	Alternative method 3					
	15 × 8 or 120 or 15 × 6 or 90	M1	oe total number of hours needed oe total number of hours worked in the first 6 hours			
	$\frac{15 \times 8 - 15 \times 6}{12}$ or 2.5	M1dep	oe number of remaining hours divided by the other 12 machines			
	8.5	A1				
	Additional Guidance					
	Note that 15 ÷ 6 is not a correct method to get 2.5 (unless simplified from 30 ÷ 12), so does not score					

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier 20.

	140 ÷ 50 or 2.8 or 140 ÷ 50 × 60 or 168	M1	oe		
	2 (hours) 48 (minutes)	A1	258 (minutes) (after mid M1A1	day) implies	
	4.18 (pm)	A1ft	oe ft their time in hours and minutes with awarded		
12(a)	Additional Guidance				
	140 ÷ 50 or 2.8 = 2 hours 80 minutes 4.50	M1A0A1ft			
	140 ÷ 50 or 2.8 = 2 hours 8 minutes,	M1A0A1ft			
	140 ÷ 50 or 2.8 = 2 hours 80 minutes	M1A0A0			
	140 ÷ 50 or 2.8, Answer 4.10	M1A0A0			
	2 hours 8 minutes implies attempt at	140 ÷ 50		M1	

	Valid statement	B1ft	eg the arrival time will be it will be later time will be more ft their time in (a) eg it w 4.18pm	
	Ad	ditional G	Guidance	
	It will be delayed			B1
	The arrival time will be increased	B1		
	He will reach there late	B1		
	The time will go up	B1		
12(b)	It will go up	B1		
	The journey will take longer so the ar	B1		
	Take longer	В0		
	Longer	В0		
	Slower (restating question)	В0		
	You won't get there as quick	В0		
	Time will be longer	В0		
	Journey will be longer	В0		
	'Longer' is referring to a time period rather than an arrival time			

AQA GSCE – Sample Paper 1 (Non - Calculator) Higher Tier

	Alternative method 1				
	$15 \times \frac{4}{5}$ or 12		oe		
	or $15 \times \frac{8}{6} \text{ or } 20$	M1			
	or $\frac{4}{5} \times \frac{8}{6}$ or $\frac{32}{30}$ or $\frac{16}{15}$				
	their $12 \times \frac{8}{6}$				
17(a)	or their $20 \times \frac{4}{5}$	M1dep			
	or their $\frac{16}{15} \times 15$				
	16	A1			
	Alternative method 2				
	4 × 15 × 8 or 480	M1			
	their 480 ÷ 5 ÷ 6	M1dep			
	16	A1			
	If one person works at a slower rate the answer will be higher		oe		
17(b)	or If some of the people work at a faster rate the task will take less time to complete	B1			